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This paper proposes a new method to classify remote sensing data by using Particle Swarm Optimiza-
tion (PSO). This method is to generate classification rules through simulating the behaviors of bird 
flocking. Optimized intervals of each band are found by particles in multi-dimension space, linked with 
land use types for forming classification rules. Compared with other rule induction techniques (e.g. 
See5.0), PSO can efficiently find optimized cut points of each band, and have good convergence in the 
search process. This method has been applied to the classification of remote sensing data in Panyu 
district of Guangzhou with satisfactory results. It can produce higher accuracy in the classification than 
the See5.0 decision tree model. 
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1  Introduction 

Image classification is a fundamental process in remote 
sensing applications, which is to extract useful geo-
graphic information from raw image data[1]. Conven-
tional classification methods include minimum distance 
from means, maximum-likelihood, cluster analysis and 
Bayesian classification[2,3], which prove to be simple and 
useful. However, these approaches are all based on sta-
tistical principles, and require training data following a 
normal distribution. Training samples and model pa-
rameters will directly affect the overall quality of classi-
fication[4]. Recently, numerous new methods for remote 
sensing classification have been developed, such as ma-
chine learning[5,6], support vector machine (SVM)[7,8], 
neural network[9,10], fuzzy set[11] and genetic algo-
rithm[12], These methods may have higher accuracies 
than conventional classifiers. However, there is still 
considerable scope for further increases in classification 
accuracies so that the results can satisfy most of the ap-
plications[13]. Thus, it is still a key topic in remote sens-
ing for exploring new methods to increase classification 
accuracies.  

Recently, Artificial Intelligence (AI) techniques have 
been increasingly incorporated in the classification of 
remote sensing images[14]. As a bottom-up approach, 
Swarm Intelligence (SI) is actually a complex 
multi-agents system, consisting of numerous simple in-
dividuals (e.g., ants, birds, etc.), which exhibit their 
swarm intelligence through cooperation and competition 
among the individuals. Although there is typically no 
centralized control dictating the behavior of the indi-
viduals, the accumulation of local interactions in time 
often gives rise to a global pattern, SI has currently be-
come a hot topic in artificial intelligence research, and it 
has succeeded in solving problems such as traveling 
salesman problems, data clustering, combination 
optimization, network routing, rule induction, and 
pattern recognition[15―20]. However, using SI in remote 
sensing classification is a fairly new research area and 
needs much more work to do. 
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SI mainly involves two algorithms, i.e., particle 
swarm optimization (PSO) and ant colony optimization 
(ACO). In this paper we try to introduce PSO into re-
mote sensing image classification. Particle swarm opti-
mization (PSO), a new population-based evolutionary 
computation technique inspired by social behavior 
simulation, was first introduced in 1995 by Kennedy and 
Eberhart[21]. PSO is an efficient and effective global op-
timization algorithm, which has been widely applied to 
nonlinear function optimization[22]. Complex society 
behavior can be well simulated and explained by PSO, 
which is effective to solve complex optimization prob-
lems[22]. Compared with evolution algorithms, PSO re-
serves the global searching strategy based on community; 
avoiding complex genetic operators with a simple 
speed-offset model; tracing current searching situation 
and tuning the strategy when necessary for strong mem-
ory, which makes PSO have powerful global conver-
gence and stronger robustness[22]. 

This paper proposes a new method to classify remote 
sensing data based on particle swarm optimization clas-
sifiers (PSO-Miner). Classification rules were designed 
through simulating the behaviors of bird flocking. Opti-
mized intervals of each band were found by particles in 
multi-dimension search space, linked with land use 
types for forming classification rules. Training data are 
removed by a sequence covering algorithm. If the re-
maining pixels of certain land use type are less than a 
threshold value, rule induction will stop, and go to next 
land use type. This procedure continues until all the land 
use types have been examined. 

2  Particle swarm optimization 

The PSO is a population-based optimization technique, 
where the population is called a swarm. A swarm of in-
dividuals (called particles) fly through the multi-dimen- 
sional search space with a velocity, which is constantly 
updated by the particle’s own experience and the ex-
perience of the particle’s neighbors or the experience of 
the whole swarm[21]. Each particle represents a candidate 
solution to an optimization problem. Particles are ini-
tialized with random positions and velocities, the opti-
mum is searched by iteration processes. During each 
iteration, the particle is updated through tracking two 
“extrema”. The former is the best position found by the 
particle by far, which is called the personal best (pbest). 
The latter is the position with the highest fitness value in 

the entire run, which is called the global best (gbest). 
Each particle searches in the problem space by tracking 
the particle that has reached its best position, until the 
best position for itself can be located[21].  

As shown in Figure 1, the particle performs an opti-
mized searching behavior in a two-dimensional search 
space. Here Xt denotes the position of a particle during 
its previous iteration, Xt+1 denotes the position of a par-
ticle right after the previous iteration; the velocity of a 
particle is the sum of three velocity vectors, i.e., Vt is 
velocity during the previous iteration, Vpbest is velocity 
of a particle at its personal best, Vgbest is velocity of a 
particle at the global best. Under the combined influence 
of Vt, Vpbest and Vgbest, the particle will move to its new 
position at Xt+1 with velocity Vt+1, getting closer to the 
best position. As iterations continue, a particle would be 
approaching the best position, and would eventually lo-
cate the best position or the best possible position.  

 
Figure 1  An illustration of optimized searching behavior of particle in a 
two-dimensional search space. 

3  Remote sensing classification based 
on PSO 

Each particle has a memory, remembering the best posi-
tion of the search space it has ever visited, which makes 
PSO have powerful global convergence and stronger 
robustness[22]. As a result, PSO can be efficiently used to 
solve nonlinear problems, and it is particularly suitable 
for use in complex remote sensing classification. By 
taking TM image as an example in this study, this paper 
introduces a new method to classify remote sensing data 
based on particle swarm optimization classifiers 
(PSO-Miner).  

PSO has been succeeded in solving problems such as 
traveling salesman problems (TSP), data clustering, 
combination optimization and pattern recogni- 
tion[15,16,17,20]. However, the studies on classification rule 
induction using PSO are still relatively unexplored. 
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Sousa et al. first developed a binary-encoding 
PSO-based rule induction algorithm in 2003[23]. In this 
paper, we propose a PSO-based rule induction algorithm 
(PSO-Miner) for remote sensing classification, which 
adopts a real-encoding way[24]. In comparison with other 
rule classifiers, PSO-Miner can be applied to both dis-
crete and continuous attributes. In PSO-Miner algorithm, 
classification rules were designed through simulating the 
behaviors of bird flocking. Each particle corresponds to 
a route, Optimized intervals of each band were found by 
particles in multi-dimension space, linked with land use 
types for forming classification rules (Figure 2). The 
rule format is described as   

IF   1 _1band Value=  
AND 2 _ 2band Value=  

AND _band j Value j=
 

THEN _Class x  
For the PSO-Miner algorithm each rule is treated as a 

volumeless particle in D-dimensional searching space. 
In this paper the best zone [x−, x+] of a band is defined 
for each rule, here x− denotes the lower threshold of the 
best zone while x+ denotes the upper threshold of the 
best zone (Figure 2). Since the lower and upper thresh-
olds for a zone occur in pairs, D=2n for remote sensing 
data with n bands. Suppose there are m particles, the 
position of the i th particle is represented as 1 1( , ,i ix x− +  

2 2, , , , )i i in inx x x x− + − + , while the velocity of the ith par- 

ticle is represented as 1 1 2 2( , , , , , , ).i i i i in inv v v v v v− + − + − +  
A particle will successively adjust its velocity and posi-
tion in accordance with the current personal best p(t) and 
global best pg during its flying process. The position at 
next iteration is calculated according to the following 
equations[21]:  
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where I=1, 2, …, , m; j=1, 2, …, n; t is the number of 
iterations; w(t) is the inertia weight, which is employed 
to control the influence of the previous history of veloci-

ties on the current velocity. A larger inertia weight w(t) 
facilitates globe exploration, while a smaller inertia 
weight w(t) facilitates local exploration; c1 and c2 are 
two positive constants, called cognitive learning rate and 
social learning rate respectively; r1ij, r2ij, r3ij and r4ij are 
random values varying in the range [0,1]; p−ij(t) and p+ij(t) 
are the best fitness values for the lower threshold and the 
upper threshold, respectively, as searched by the i th 
particle up to the moment; pg− and pg+ are the best fit-
ness values for the lower threshold and the upper 
threshold, respectively, as searched by the entire particle 
swarm up to the moment, and gp − =  1( ,gp −  2 ,gp −  

),g np −  gp + = 1( ,gp +  2 , )g g np p+ + .  

 
Figure 2  The principle of remote sensing classification based on 
PSO-Miner.  

 
Remote sensing classification based on PSO-Miner 

can be divided into three stages, i.e., rule construction, 
rule evaluation and covering algorithm of training set.  

3.1  Rule construction 

Rule construction stimulates the behaviors of bird 
flocking. Each particle searches the upper threshold and 
the lower threshold of the best value at each band. For 
remote sensing data with n bands, particles search the 
best value in 2n-dimensional space. The best value zone 
at each band can be connected with one another using 
the operator ‘And’, linked with land use types for form-
ing classification rules.  

Initially, particles are randomly distributed in a 
2n-dimensional space, the initial position values of par-
ticle can be expressed as   

max min min

max min min

* ( )
,

* ( )
ij j j j

ij j j j

x Rand band band band

x Rand band band band
−

+

= − +⎧⎪
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where x−ij and x+ij represent the upper threshold and the 
lower threshold of the ith particle at the jth band respec-
tively, and if x−ij>x+ij, they will be reciprocally replaced. 
Rand is a random value varying in the range of [0,1]. 
bandjmin and bandjmax are respectively the maximum 
value and the minimum value of the jth band. The initial 
velocity of a particle can be expressed as   

max

max

*
,

*
ij j

ij j

v Rand v

v Rand v
− −

+ +

⎧ =⎪
⎨

=⎪⎩
          (4) 

where max
jv−  and max

jv+  are respectively the maximum 

velocity values in the upper threshold direction and in 
the lower threshold direction.  

After each iteration run, the fitness value for each 
particle is calculated, and the current fitness value is 
compared with the individual optimum for each particle 
prior to iteration. If the current fitness value is better 
than the individual optimum for a particle prior to itera-
tion, then the individual optimum will be updated, oth-
erwise, the individual optimum will not be updated. Af-
ter individual optimum is calculated for all particles, the 
best individual optimum becomes the global optimum. 
Thereafter, the inertia weight in eq. (1) is updated ac-
cording to the following equation:  

max max min max( ) ( ) / ,w t w t w w I= − ⋅ −       (5) 
where t denotes the number of iterations, wmax is the 
maximum inertia weigh, wmin is the minimum inertia 
weigh, Imax is the predefined maximum number of itera- 

tions. Based on the current individual optimum, global  
optimum as well as inertia weight for a particle, eqs. (1) 
and (2) can be used to upgrade the flying velocity and 
position for each particle. When the absolute values for 
global optimum fitness and average fitness are smaller 
than a threshold, or the iteration number exceeds Imax, 
the cycling is terminated, and a set of classification rules 
are generated. The pseudo-code for classification rules 
construction is as follows (Table 1). 

3.2  Rule evaluation 

The fitness of a classification rule (particle) can be used 
to evaluate the position of a particle, and to make judg-
ment about its flying direction. Therefore, a reasonable 
choice of fitness function is importance for problem 
solving. The classification rule (particle) evaluation can 
be calculated using the following equation:  

TruePos TrueNeg ,
TruePos FalseNeg FalsePos TrueNeg

Q
⎛ ⎞ ⎛ ⎞

= ⋅⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
(6) 

where TruePos is the number of cases covered by the 
rule that have the class predicted by the rule; FalsePos  
is the number of cases covered by the rule that have a 
class different from the class predicted by the rule; 
FalseNeg  is the number of cases that are not covered 
by the rule but that have the class predicted by the rule; 
TrueNeg  is the number of cases that are not covered 
by the rule and that do not have the class predicted by 
the rule. The larger the value of Q is, the higher the 
quality of the rule becomes. 

Table 1 
Input training data 
Initialize particle swarm  
While (t<Max_ iteration or err>Min_error_criteria)  

For i = 1 to No_of_particles 
Calculate particle’s down_ fitness   
If the down_fitness value is better than the best down_fitness value (p−best) in history  
Then 

        Set current value as the new p−best 
End if 
Choose the particle with the best down_fitness value of all the particles as the g-best 
Calculate particle’s upper_ fitness   
If the upper _fitness value is better than the best upper_fitness value (p+best) in history  
Then 

Set current value as the new p+best 
End if 
Choose the particle with the best upper_fitness value of all the particles as the g+best 
Update particle velocity according to eq. (1) 
Update particle position according to eq. (2) 

Next i 
Loop 
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3.3  Covering Algorithm on training set  

The covering algorithm is basically a divide-and- con-
quer technique. Being given an instance training set, it 
runs the rule induction algorithm in order to obtain the 
highest quality rule for the predominant class in the 
training set[23]. 

The best position pg for a particle as searched by us-
ing the algorithm (the best classification rule) is put into 
the rule set R, then sequence covering algorithm is em-
ployed to remove correctly classified instances from the 
training set. The rule induction algorithm is run once 
more, iteratively a ordered rule set is built. The covering 
algorithm runs until only a pre-defined number of in-
stances are left to classify.  

4  Classification experiment and results 

A satellite Landsat TM image in  Panyu district of 
Guangzhou acquired on July 18, 2004 was used for the 
experiment of classification using this PSO-Miner 
method. The study area has a size of 1666×2211 pixels 
with a ground resolution of 30 m (Figure 3). Selection of 
training samples is a key step for remote sensing classi-
fication because these samples influence the quality of a 
discovered rule. Based on field investigation and land 
use maps, sample data were acquired by using a hierar-
chically random sampling method. A total of 4120 sam-  

 
Figure 3  TM image (5, 4, 3) in the study area of Guangzhou. 

ples were obtained, which were divided into two groups 
−2120 as the training data set, and 2000 as the test data 
set. 

The PSO-Miner classification model involves a two 
step process: extraction of classification rules and rec-
ognition of land use types from remote sensing images. 
Classification rule is generally discovered from training 
data using PSO-Miner algorithm, which is developed 
using Visual Basic 6.0 language. Land use types are ob-
tained by applying these rules discovered by the 
Ant-Miner to the classification of remote sensing images, 
and is also developed using Visual Basic 6.0 language.  

When PSO is employed for extraction of classifica-
tion rules, parameters shall be given their pre-defined 
values. In this study, the pre-defined values for all the 
parameters are listed in Figure 4. Because the best upper 
threshold and the best lower threshold shall be prede-
fined for each band among the 6 TM bands (including 
bands 1―5 and band 7), the optimized searching by a 
particle actually proceeds in D=2×6-dimensional space, 
where there are 8 classes for remote sensing classifica-
tion. Here the population size for each class (particle 
number, Numb) is set at 20, and the maximum velocity 
for a particle (vmax) is set at 10. As has already been 
shown from the study results by Shi et al.[25], big inertia 
weight is favorable for prevention of local optimum, 
while small inertia weight is favorable for algorithm 
convergence. As a result, inertia weight can be set to be 
linearly decreased with time, with the maximum inertia 
weight (wmax) set at 0.9, and the minimum inertia weight 
(wmin) set at 0.4. When the iteration number exceeds 100, 
the recycle will be forced to terminate. When the num-
ber of remaining instances for each class is smaller than 
5, rule discovery will be terminated for this type of data, 
but will proceed for the next type of data. The weight for 
PSO’s learning rate also seriously affects the perform-
ance of the algorithm. The cognitive learning rate of 
particles is expressed by c1, and c1=0 means that the par-  

 
Figure 4  The parameters of PSO-Miner for remote sensing classifica-
tion. 
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ticle shows no cognitive function, a particle is capable of 
entering a new searching space under the interaction of 
particles, but tends to get into local optimum. The social 
learning rate of particles is expressed by c2, and c2=0 
means no such information sharing among the particles, 
hence low probability in obtaining an globe optimum. 

The learning rates were c1=c2=2 in this experiment.  
Based on the training data selected previously, 

PSO-Miner algorithm was run and 40 classification rules 
were obtained. A selected set of the classification rules is 
listed in Table 2. Figure 5(a) is the classified remote 
sensing image based on PSO-Miner.

 

 
Figure 5  Land use classification in the study area of Panyu district. 

 
Table 2  Selected classification rules by using PSO-Miner 

Rule 1 
IF   
96.7<B1<141.7 & 48.9<B2<73.9 & 64.5< B3 <118.4 & 81.4< B4 <103.3 & 110.8< B5 <150.3& 46.9< B7 <98.4 

Then     
class=Urban  
 
Rule 2 
IF   
84<B1<89.7 & 37<B2<48.2 & 42< B3 <62.9 & 20< B4 <41.2 & 12.8< B5 <45.3& 4.4< B7 <23.9 

Then     
class=Water  
 
Rule 3 
IF   
77.4<B1<90.8 & 34.9<B2<44.8 & 36.5< B3 <56.7 & 81.4< B4 <140 & 59.3< B5 <97& 18.4< B7 <46.5 

Then     
class=Agriculture 
 
Rule 4 
IF   
107.5<B1<152.6 & 58.9<B2<105.6 & 89.7< B3 <160.5 & 85.8< B4 <131.4 & 137.7< B5 <238.1& 64.2< B7 <126.4 

Then     
class=Developing land 
…… 
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The results from this PSO-Miner method are com-
pared with those from a decision tree method. The deci-
sion tree method is to reconstruct classification rules 
automatically by using some machine learning tech-
niques, such as the See 5.0 system. The See 5.0 system 
is based on the ‘information gain ratio’ to determine the 
splits at each internal node of the decision tree.  

In the comparison, the same training data (2120 sam-
ples) were used for the classification and the same test 
data (2000 samples) were used for validation. The clas-
sification result of the decision tree method using the 
See 5.0 system is shown in Figure 5(b). The comparison 
between Figure 5(a) and (b) indicates that the PSO 
method is better than the decision tree method. An 
enlarged part of the study area is shown in Figure 6.  

Figure 6(a) and (d) are the original TM image. The 
visual interpretation indicates that some ponds were in-
correctly classified as water by the See 5.0 method in 
Figure 6(c) and (f), but they were correctly classified by 
this PSO algorithm. Moreover, this proposed method 
produces more homogeneous patterns than the See 5.0 
method. The former can generate the results more simi-
lar to those of traditional land use mapping.  

As shown in Table 2, the total accuracy is 84.6% by 
using this PSO-Miner method. The ponds in the study  

area have been identified successfully. In contrast, as 
shown in Table 3, a lower total accuracy (81.8%) is ob-
tained by using the See 5.0 method. The total accuracy 
has a bias because of the difference between the actual 
agreement and chance agreement, which can be effec-
tively explained with the Kappa coefficient[26]. As a re-
sult, more meaningful results will be yielded through 
comparing the Kappa coefficient for remote sensing 
classification. The Kappa coefficient is calculated as 
follows:  

1 1

2

1

( )
Kappa ,

( )

r r

ii i i
i i

r

i i
i

M x x x

M x x

+ +
= =

+ +
=

− ⋅
=

− ⋅

∑ ∑

∑
        (7) 

where xii is the elements on the main diagonal of the 
error matrix, xi+ is the sum of the ith row of the error 
matrix, x+i is the sum of ith column of the error matrix. 
According to eq. (7), the Kappa coefficients for this two 
classification algorithms were calculated (Tables 3 and  
4). The Kappa coefficient of PSO-Miner method is 
0.821, a lower Kappa coefficient (0.788) is obtained by 
using See 5.0 Obviously, the PSO-Miner classification 
results are better than the See 5.0-based classification 
results. 

 
Figure 6  Land use classification in the local enlargement area of Panyu district. 
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Table 3  Confusion matrix of classification for Panyu district by using PSO-Miner 
Class 

Actual 
Residential Forest Water Orchard Cropland Fallow Pond Developing land Total User’s accuracy 

(%) 
Residential 288 1 2 1 8 19 3 7 329 87.6 
Forest 1 98 1 9 5 0 0 1 115 85.2 
Water 1 3 313 2 2 1 28 1 351 89.2 
Orchard 9 10 3 184 35 4 2 0 247 74.5 
Cropland 1 4 2 31 259 7 1 2 307 84.4 
Fallow 10 1 1 6 4 107 1 1 131 81.3 
Pond 11 3 37 1 0 4 285 1 342 83.4 
Developing land 10 1 0 3 2 3 1 158 178 88.7 
Total 331 121 359 237 315 145 321 171 2000  
Producer’s accuracy (%) 87.0 81.0 87.2 77.6 82.2 73.8 88.7 92.4   

Total accuracy =84.6%        Kappa coefficient =0.821 
 

Table 4  Confusion matrix of classification for Panyu district by using See 5.0 
Class 

Actual 
Residential Forest Water Orchard Cropland Fallow Pond Developing land Total User’s accuracy 

(%) 
Residential 281 2 3 0 9 22 5 7 329 85.4 
Forest 1 96 0 8 8 0 1 1 115 83.4 
Water 2 4 304 3 3 1 33 1 351 86.6 
Orchard 7 12 2 183 36 6 1 0 247 74.1 
Cropland 1 5 2 31 258 8 1 1 307 84.0 
Fallow 13 2 0 5 5 104 1 1 131 79.4 
Pond 14 2 60 3 1 6 254 2 342 74.3 
Developing land 13 1 1 5 2 1 0 155 178 87.1 
Total 332 124 372 238 322 148 296 168 2000  
Producer’s accuracy (%) 84.6 77.4 81.7 76.9 80.1 70.3 85.8 92.3   

Total accuracy =81.8%        Kappa coefficient =0.788 

 
5  Conclusions 

Intelligent classification is a hot topic in remote sensing 
study. Traditional approaches of classification may have 
some limitations in constructing proper classifiers when 
the study area is complex. Therefore, it is necessary to 
introduce intelligent methods to improve the accuracy of 
classification. This paper has presented a new method to 
classify remote sensing data by using this PSO-Miner 
algorithm. PSO is actually a complex multi-agents sys-
tem, which exhibits their swarm intelligence by coop- 
eration and competition among the simple individuals, 
and the entire problem solving would not be affected by 
failure of one or several intelligent individuals. In con-
trast to evolution algorithm, PSO adopts a simple veloc-
ity-displacement model and avoids complex genetic op-
erations, while its memorizing capability enables it to 
track the current searching conditions, to make dynamic 
adjustments concerning its searching strategies, and to 
behave strong global convergence and robustness. 
Therefore, PSO is particularly suitable for extraction of 
complex geographical rules.  

Classification rules can be constructed with 
PSO-Miner algorithm through simulating the behaviors 
of bird flocking, Training data covered by the discovered 
rule can be removed using sequence covering algorithm, 
and this process will proceed until all rule discovery is 
completed. The PSO-Miner algorithm proves to be par-
ticularly suitable for processing continuous data, since 
particles can automatically search the best divisions of 
each attribute. Furthermore, the If-Then classification 
rules discovered by this PSO algorithm can describe the 
complex relationship more conveniently and more com-
prehensible than mathematical equations.  

The PSO-Miner algorithm has been applied to the 
classification of remote sensing images of  Panyu dis-
trict. The comparison of classification accuracies is car-
ried out between this PSO-Miner and the See 5.0 
method. It is found that this PSO-Miner method has the 
total accuracy of 84.6% and the Kappa coefficient of 
0.821. The decision tree method has the accuracy of 
81.8% and the Kappa coefficient of 0.788. It clearly in-
dicates that this PSO-Miner method has a better accu-
racy than the decision tree method.  
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